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Abstract This study is intended to provide a different perspective for solving two-dimensional inverse 
heat conduction problems. At the beginning of the study, finite-difference methods are employed to 
discretize the problem domain and then a linear inverse model is constructed to identify the initial and 
boundary conditions. The present approach is to rearrange the matrix forms of differential governing 
equation and estimate coefficients of unknown condition. Then, the linear least-squares method is adopted 
to find the solution. The results show that if the measurement errors are considered, more measuring points 
are needed in order to increase the congruence of the estimated results to exact solutions. In this paper, 
temperature-time variations are measured at internal and outside points. A little effect of the measurement 
time interval on the estimates are shown with the method proposed. !". 1997 Published by Elsevier 

Science Ltd. 

INTRODUCTION 

In recent years the analysis of  inverse heat conduction 
problems (IHCP) has numerous applications in vari- 
ous branches of  science and engineering, such as the 
prediction of  the inner wall temperature of  a reactor, 
the determination of  the heat transfer coefficient, the 
outer surface conditions in the re-entry of  a space 
vehicle, and the temperature or heat flux at the tool 
work interface of  machine cutting. In most cases, the 
IHCP have basically dealt with one-dimensional ( l -D) 
geometry. The difficulties of  multi-dimensional IHCP 
are more pronounced, and little research is available, 
even for two-dimensional (2-D) cases. 

Various methods have been employed to handle the 
IHCP in I-D domains, such as graphical [1], poly- 
nomial [2~4], Laplace transform [5], finite difference 
and finite element [6-12], exact methods [13-14], and 
dynamic programming [15]. In contrast, in 2-D IHCP, 
the first analytical solution was introduced by Imber 
[16]. Subsequently, most of  the research related to the 
numerical treatment of 2-D IHCP is based on different 
manners of  combining finite-difference or finite- 
elements realizations with the future temperature 
method of  Beck [9]. The applications of  these ideas are 
presented in [17, 18]. More recently, a direct sensitivity 
coefficient method was presented by Tseng et al. [19]. 

In this study, a methodology is presented to solve 
the inverse problems. This method rearranges the 
matrix forms of  direct problems in order to represent 
the unknown conditions explicitly. The inverse model 
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can be directed to solve through the linear least-square 
error method. Additionally, the temperature histories 
at every node in the direct problems can be obtained. 
From it the steady time can be determined. It is also 
for studying the time interval and the inverse values 
relationship. Furthermore,  the accuracy of  the esti- 
mation of  the unknown conditions from the knowl- 
edge of the temperature with containing measurement 
errors are examined at measurement points. 

DESCRIPTION OF THE PROPOSED METHOD 

Consider an infinite long hollow cylinder, 
a ~< r ~< b, shown as Fig. l, with constant thermal 
properties. This cylinder originally had a zero tem- 
perature. At a specific time, an initial condition 9(r, O) 
is applied to the cylinder at t = 0. One unknown tem- 
perature function riO) is applied to the inner surface 
(r = a), and a heat flux q(O), at the outer surface 
(r = b). A dimensionless mathematical  formulation of  
the heat conduction problem is presented as : 

1 ~? /R¢?T\ 1 ¢~2T ?,T 
R ¢?R ~ + R 2 ~,02 - ~3"c A <<, R <~ 1, 

0~<0~<2~r, r > 0  (1) 

A ~ R < ~ I ,  

O<~O<~2~z, r = 0  (2) 

R = A ,  0~<0~<21r, r > 0  

T(R, 0,0) = G(r, O) 

T(A ,O,z )=F(O)  

(3) 
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NOMENCLATURE 

matrix, the function of thermal 
properties 
dimensionless inner radius 
= a/b 

the coefficient matrix of 0 
dimensionless inner boundary 
condition 
dimensionless initial condition 
dimensionless outer boundary 
condition 
the reverse matrix of the inverse 
problem 
dimensionless radial 
coordinates 
dimensionless temperature. 

Greek symbols 
0 matrix, the function of the boundary 

and initial conditions 
0 the coefficient vector of F(O), G(R, O) 

and Q(O) 
2 the probability of a random value 
¢r measurement error 

dimensionless time. 

Subscripts 
i index of dimensionless radial 

coordinate 
j index of dimensionless angular 

coordinate 
k index of dimensionless time 

coordinate. 

~.5 

Fig. 1. 

~T 
- ~ R =  =Q(0)  R = l ,  0~<0~<2n, ~ > 0  

(4) 

the various dimensionless parameters in the equations 
above are defined as follows : 

A = a / b ,  R = r / b ,  

T - -  T~ g(r, O) -- T~ 
T = - -  G(R, O) - 

qob/k ' qob/k 

f(O) -- T~ q(O) t~ 
F ( O ) - - - ,  Q ( O ) -  , T = - -  

qob/k qo b ~ 

where Too is ambient temperature, q0 is reference heat 
flux. 
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This inverse problem is to identify the applied 
unknown temperature G(R, 0), F(0), and heat flux 
Q(0), from the temperature measurements taken at 
the interior points of the cylinder. 

Suppose that the applied surface temperature 
G(R, 0), F(O), and heat flux Q(O), are represented as 
the following series forms in the problem domain : 

G(R, O) = ~ af,(R, O) (5) 
i = 0  

F(O) = ~ bi(~,(O) (6) 
i--O 

Q(O) = ~ bi¢(O) (7) 
i = 0  

where ~(R), q~i(v), and ~i(O) can be any non-singular 
function in the problem domain. 

For illustration, the implicated finite-difference 
method is employed to demonstrate the analysis 
process. After discretization, the above governing 
equation combined with the G(R, 0), F(O) and Q(O), 
can be expressed as the following recursive forms : 

1 
AR2(Ti I,i.k--2ri.j,k + T~+lJ,k) 

1 1 
+ Rii 2~R (Ti+l j,k - Ti_ 1,Lk) 

1 1 
+ R~ 2 (A0)2(Ti.., ,,k -2T,,i.* + Ti,/+ I.k) 

1 
= ~(Ti ,  j,, -- Tij,,_, ) (8) 

where AR and A0 are the increments in the spatial 
coordinates and Az is the increment in the time 
domain, i is the ith grid along the R coordinate, j is 
the jth grid along the 0 coordinate, k is the kth grid 
along the time coordinate and Tij,, is the temperature 
at the grid point (i,j, k). 

Using the recursive forms, a matrix equation can 
be expressed as 

AT = 0 (9) 

where the A matrix is the function of thermal proper- 
ties and the scale of the position and time. The com- 
ponents ofT are the temperature in discretized points, 
and the components of 0 are the function of the 
boundary conditions, namely the coefficients of 
G(R, 0), F(O) and Q(O). 

For the inverse problems, A can be constructed 
according to the known physical model and numerical 
methods and T can be measured by the ther- 
mocouples. The coefficients of G(R, 0), F(O) and Q(O) 
are the main tasks to resolve. Decoupling the 
coefficients of G(R, 0), F(O) and Q(O) from 0 will trans- 
fer the direct formulation to the following inverse 
forms : 

AT = BO- (10) 

where 0 = B0, B is the coefficient matrix of O and 0 is 
the coefficient vector of G(R, 0) F(O) and Q(O), then O 
can be solved by the linear-squares error method as 
follows : 

f f=[ (A ' B ) T ( A - ' B ) ] - ' ( A - ' B ) T T  (11) 

[(A-'B)T(A-~B)]-'(A IB)T is the reverse matrix of 
the inverse problems and denoted as R. 

Equation (11) is assumed to measure all discretized 
points in the problems. The realistic experimental 
approach is to measure only the few points or one 
position point in the problem. We can construct the 
part of matrices R, T and 0 corresponding to the 
measuring positions and times in order to estimate the 
unknown conditions of the problem. 

According to the above derivation, it is possible to 
identify whether the solution is unique or not. The 
method by which to identify the properties of the 
solution is based on the theory of linear algebra, which 
will be shown in the following descriptions. If the rank 
of reverse matrix is less than the number of elements 
of the coefficient vector, the number of measurements 
in time domains need to be increased. Furthermore, 
if the rank of reverse matrix is equal to the number of 
elements of the coefficient vector, the perpendicular 
distance from 0 to the column space of A-JB need to 
be checked. If the distance is vanished, the solution 
becomes unique. 

RESULTS AND DISCUSSION 

The problem contained a number of examples to 
verify the accuracy, efficiency, and versatility of the 
proposal method for simultaneously estimating the 
initial and boundary conditions. The direct problem, 
the special interval 0.5 ~< R ~< 1.0 is divided into five 
intervals, and 0 ~< 0 ~< 2g is divided into 10 intervals. 
The iteration step corresponds to a mesh size of 
AR =0.1 and A0 = 2z~/9. Equations (8)-(11) were 
applied to obtain the temperature histories at the 
nodes of the hollow pipe. The temperature histories is 
assumed to measure all discretized points in the 
inverse problem. The simulated temperature in all 
examples is presumed to contain measurement errors. 
In other words, the random errors of measurements 
are added to the exact temperature computed from 
the solution of direct problem. Thus, it can be written 
a s  

0 . . . . . . . . . . .  = 0 . . . . .  -~- ~0-.  (12) 

For normal distribution errors, the probability of a 
random value, 2, lying in the range - 3.0 ~< 2 ~< 3.0 is 
99.43%. 

The accuracy of the estimation of the unknown 
conditions from the knowledge of the temperature at 
measurement points are examined. As a result, the 
estimated solutions without containing measurement 
error (a = 0) converged to the solutions solved by 
finite-difference method for all examples. Further- 
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more, the solutions are unique through the proposed 
verifying method. Detailed descriptions for the prob- 1.50 
lem are shown as follows 1.25 

1 . 0 0  

Example 1 .~ 0.75 
The unknown initial condition [q(r, 0)] and the 

.~ 0.50 
boundary term [J(0) and q(0)] are expressed in the ~. 
following form : ~ 0.25 

9(r,O)=O.O a t t = 0  ~ 0 
• - -0.25 

. / ( 0 )=  T~ + T o s i n 0  a t r = a  .~ -o.5o 
" O 

Z -0.75 ~T 
q ( O ) = - q o s i n O = - K T  r a t r = b  -l.OO 

-1.2 
0 

the corresponding dimensionless form can be 
described as : 

G(R,O) = 0  a t r = 0  

F(O) = ~ sin 0 
a,,OlAqo, 

a t R = A  

Q(O) q - s i n 0  OT - - - a t R =  l 
qo ?JR 

let To/(qob/K) = 0.8. 

The temperature profile in direct problem for vari- 
ous time can be obtained by using equations (8) (l l). 
The results are shown in Fig. 2, it approaches steady 
state for r ~> 1.2. 

For  this example, the steady-state has been solved 
by Tseng et al. [20]. Figure 3 shows a comparison of  
the present estimate with those given by Tseng et al. 
The agreements are quite excellent. However,  the 2 
nodes temperature histories (20 time-step) are used 
in the present study, it can estimate the initial and 
boundary conditions, while in Tseng' study [20], a 
total of  80 interior measurements are needed to esti- 
mate the boundary conditions only. This implies that 
the present method is more powerful than Tseng's 
DSC method and hence, the proposed method is much 
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more effective for inverse heat coeducation problems. 
As illustrated in Table l, for the case of  reflected 
measuring errors, very good approximation can be 
attained, even for two measurement points only. 

Figure 4 shows a comparison of  surface tem- 
perature and heat flux for o = 0.0, 1.0 and 5.0% with 
18 measurement points in example 1. The input data 
without measurements errors, is shown as a solid line. 
Maximum discrepancies in temperature at the inner 
surface are I. 13 and 7.91% for the 1.0 and 5.0 error 
cases, respectively, the corresponding discrepancies in 
the heat flux are even greater, at 2.77 and 13.84% 
for the 1.0 and 5.0% error cases, respectively. The 
discrepancy magnitudes in both temperature and heat 
flux are directly proport ional  to the possible mea- 
suring errors evolved. The present results confirm that 
the inverse values being extremely sensitive to mea- 
suring error is one of  the inherent characteristics of  
IHCP, as mentioned by Beek et al. [20] and Hense 
[211. 

The estimated results with errors 0.0, 1.0 and 5.0% 
at different time intervals are shown in Tables 2-4, 
respectively. When measurement error is free, the esti- 
mated values are very close to the exact solution, and 
independent of time coordinate. At a = 1.0%, the 
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Table  1. Es t ima te  initial  cond i t ion  [G(R, 0)] and  b o u n d a r y  cond i t ion  [F(0), a n d  Q(0)]  for  e xa mp le  1 w i thou t  m e a s u r e d  er ror ,  
t ime f r o m  0.075 to 1.5, and  R = 0.8 

0 (deg) 

F(O) Q(O) 

Estimate Estimate 

Exact 2 points 3 points 9 points Exact 2 points 3 points 9 points 

0 0.0 - - 8 . 134x10  ~ - -60244x10  ~ - -1 .482x10  8 0.0 - - 3 . 362x10  ~ - -1 .167x10  ~ 4 .0432x10 8 

40 0.5142300 0.5142297 0.5142306 0.5142297 --0.642787 0.642787 --0.642785 --0.642787 
80 0.7878462 0.7878453 0.7878465 0.7878460 --0.984807 --0.984809 --0.984806 --0.984807 

120 0.6928203 0.6928211 0.6928209 0.6928209 --0.866025 --0.866025 --0.866026 0.866026 

160 0.2736161 0.2736170 0.2736187 0.2736177 --0.342020 --0.342024 --0.342020 --0.342022 
200 --0.273616 --0.273614 --0.273614 --0.273614 0.3420201 0.3420174 0.3420173 0.3420177 

240 -0 .692820 --0.692817 --0.692818 --0.692819 0.8660254 0.8660266 0.8660254 0.8660237 

280 --0.787846 --0.787845 --0.787843 0.787846 0.9848077 0.9848100 0.9848141 0.9848084 

320 -0 .514230 --0.514233 -0 .514232 --0.514232 0.6427876 0.6427899 0.6427906 0.6427909 
Max. 0.0 3 .2×10  5 1 . 3 6 x t 0  6 1 .6x10  7 0.0 3 . 3 x 1 0  6 3 . 1 x 1 0  6 1 .9x10  7 

error 
G(R,O) 0.0 1.723 x 10 ~o 1.6754x 10 9 8.266x 10 "~ 0.0 1.723 x 10 Jo 1.675 x 10 9 8.266x 10 "~ 

Tab le  2. Es t ima te  initial  cond i t ion  [G(R, 0)] and  b o u n d a r y  condi t ion  [F(0), and  Q(0)],  for  ~ = 0.075 ~ 1.5, r = 0.075 ~ 0.75, 
and  r = 0.75 ~ 1.5, in example  1 wi thou t  m e a s u r e d  error ,  3 m e a s u r i n g  poin ts  

0 (deg) 

F(O) Q(O) 

Estimate Estimate 

Exact r=0 .075~1.5  z=0.075~0.7 r=0.075~1.5  Exact ~=0.075~1.5 z=0.075~0.7 r=0.075~1.5  

0 

40 
80 

120 
160 

200 

240 

280 
320 
Max. 

error 
G(R, 0) 

0.0 -60244×10  8 - 5 . 2 4 2 x 1 0  ~ 4.726×10 8 0.0 1.167x10 8 1.6808×10 ~ 1.1535x10 x 

0.5142300 0.5142306 0.5142306 0.5142305 -0.642787 -0.642785 -0.642785 -0.642785 

0.7878462 0.7878465 0.7878465 0.7878475 -0.984805 -0.984806 -0.984806 -0.984804 
0.6928203 0.6928209 0.6928209 0.6928209 -0.866025 0.866026 -0.866026 -0.866026 

0.2736161 /} .2736187 0.2736183 0.2736173 0.342020 -0.342020 -0.342021 -0.342023 

-0.273616 -0.273614 -0.273614 -0.273614 0.3420201 0.3420178 0.3420178 0.3420176 

-0.692820 -0.692818 -0.692818 -0.692817 0.8660254 0.8660254 0.8660250 0.8660262 
0.787846 -0.787843 -0.787844 -0.787846 0.9848077 0.9848141 0.9848126 0.9848086 
0.514230 --[}.514232 --0.514233 --0.513230 0.6427876 0.6427906 0.6427874 0.6427953 
0.0 3 .2x10 ~ 2.6x10 ~ 1.36x10 e 0.0 3.3x10 6 6 . 4 x l 0  7 3.1X10 ~ 

0.0 1.6754x10 9 1.286x10 9 1.2563X10 ~ 0.0 1.6754x10"9 1.2866xt0 ~ 1.2563x10 ~ 

Tab le  3. Es t ima te  initial cond i t ion  [G(R, 0)] and  b o u n d a r y  condi t ion  [F(0), and  Q(0)],  for  r = 0.075 ~ 1.5, r = 0.075 ~ 0.75, 
and  r = 0.75 ~ 1.5, in example  1, wi th  1% m e a s u r e d  error ,  18 m e a s u r i n g  poin ts  

0 (deg) 

F(O) Q(O) 

Estimate Estimate 

Exact z=0 .075~  1.5 z=0.07 ~0.7 z=0.075~ 1.5 Exact z-0 .075 ~ 1.5 ~=0.075~0.7 r=0 .075~  1.5 

0 
40 

80 

120 
160 
200 
240 
280 
320 
Max. 
error 

G(R, O) 

0.0 i .295x10 3 8.8391x10 4 1.1327x10 3 0.0 3.8852x10 4 --4.048x10 3 --4.365x10 3 

0.5142300 I} .5224885 0.5211589 0.5189049 -0.642787 --0.625438 --0.630550 --0.631787 
0.7878462 0.7789201 0.7919694 0.7879205 0.984807 -- 1.003938 --0.982435 --0.992486 

0.6928203 11.69881345 0.6801135 0.6874025 -0.866025 --0.890007 --0.897082 --0.905507 
0.2736161 (} .2741542 0.2818738 0.2804559 -0.342020 -0.332023 --0.317750 0.320948 

-0.273616 --0.271711 --0.272478 --0.271666 0.3420201 0.3486107 0.3555941 0.3525880 

--0.692820 --0.692407 --0.682803 --0.687636 0.8660254 0.8520062 0.8623446 0.8508267 
0.787846 --0.795160 --0.791878 --0.790539 0.9848077 0.9889499 0.9785556 0.9918379 

-0.514230 --I}.506093 --0.496116 -0.503388 0.6427876 0.6517354 0.6553022 0.6404372 
0.0 0.0089 0.0181136 0.010842 0.0 0.0239822 0.0310570 0.0394816 

(1.13%) (3.52%) (2.11%) (3.57%) (3.57%) (4.56%) 
0.0 2.5737 x 10 -3 2.007 x 10 4 --1.908 x 10 ~ 0.0 2.5737 x 10 3 -2.007 × 10 ~ - 1.908 x 10 4 
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Table 4. Estimate initial condition [G(R, 0)] and boundary condition [F(0), and Q(0)], for ~ = 0.075 ~ 1.5, r = 0.075 ~ 0.75, 
and r = 0.75 ~ 1.5, in example 1, with 5% measured error, 18 measuring points 

0 (deg) 

F(O) Q(O) 

Estimate Estimate 

Exact r=0.075~1.5 z=0.075~0.75 r=0.075~1.5 Exact z=0.075~1.5 "c=0.075~0.75 z=0.075~l.5 

0 
40 
80 

120 
160 
200 
240 
280 
320 
Max. 
error 

G(R, o) 

0.0 6.4790 x 10 3 4.4195 x 10 3 50663 x 10 
0.5142300 0.5555238 0 .5488757  0.5376057 
0.7878462 0.7432166 0 .8084630  0.7882186 
0.6928203 0.6693886 0 .6292837  0.6207289 
0.2736161 0.2762998 0 .3148981 0.3078084 

-0.273616 -0.264099 -0.267936 -0.263873 
-0.692820 -0.690760 -0.642774 -0.666904 
-0.787846 -0.824416 -0.808004 -0.801309 

0.514230 -0.473534 --0.423651 -0.460013 
0.0 0.0406956 0 .0905787  0.072091 

(7.91%) (17.61%) (10.4%) 
0.0 1.2868x10 2_1.003x10 3 -9.541x10 4 

0.0 1.9425x10 3_2.024x10 2 2.162x10 2 
-0.642787 -0.556043 -0.581605 -0.587786 
-0.984807 - 1.080461 --0.972949 - 1.023200 
-0.866025 0.985933 -- 1.021307 -1.063430 
-0.342020 --0.292030 -0.220663 -0.236656 

0.3420201 0.3749827 0 .4098997 0.3948694 
0.8660254 0.7959363 0 .8476284 0.7900388 
0.9848077 1.0055160 0 .9535447 1.0199562 
0.6427876 0.6875131 0 .7053470 0.6310223 
0.0 0.1199081 0 .1552820  0.1974050 

(13.84%) (17.93%) (22.79%) 
0.0 1.286x10 ~ 1.003x10 3 9.541x10 4 

maximum discrepancies in temperature are 1.132, 3.52 o.4 
and 2.11%, the maximum in heat flux are 2.77, 3.57 
and 4.56%, for the time interval, Ar = 0.075 ~ 1.5, 
0.075 ~ 0 . 7 5  and 0.75 ~ 1.5, respectively. When 
a = 5.0%, the maximum deviations in temperature 0.3 
are 7.91, 17.61 and 10.4%, the maximum dis- 
crepancies in heat flux are 13.84, 17.93 and 22.79%, 
for the time interval, Ar = 0.075 ~ 1.5, 0.075 ~ 0.75 T O.2 
and 0.75 ~ 1.5, respectively. 

Example 2 
The unknown boundary term [F(0), and Q(0)] is 

the same as in Example 1, but the initial condition 
[G(R, O) at z = 0] has no special form, it is expressed 
as follows : 

G(0.5,  O) = 0.0 

G(0.6, 0) = 0.58778525 

G(0.7, 0) = 0.95105651 

G(0.8, 0) = 0.95105651 

G(0.9, 0) = 0.58778525 

G(1.O, 0) = 0.0. 

The temperature profile in direct problem are 
shown in Fig. 5, the state is steady for z ~> 1.2. Without  
considering the measurement errors, the estimate 
values, as shown in Table 5, have very good approxi- 
mation even for two measuring points only. 

Figure 6 shows a comparison of  surface tempera- 
ture, and heat flux for a = 0.0, 1.0 and 5.0% with 18 
measuring points. The input data without measure- 
ment errors, is shown as a solid line. Maximum dis- 
crepancies in temperature at the inner surface are 3.15 
and 6.22% for the 1.0 and 5.0% error cases, respec- 
tively, while the maximum discrepancies in heat flux 
are 8.7 and 15.34% for the 1.0 and 5.0% error cases, 
respectively. Table 6 shows the corresponding 

0.1 

1.50 

1.25 

1.00 

0.75 

"~ 0.50 

~m, 0.25 
E 
~a 0 

-0.25 

"~ -0.50 

~, -0.75 
Z 

-1.00 

-1.25 

-1.50 0 

I I I 
0.4 0.8 1.2 

Fig. 5. 

1.6 

1.50 

Error 0% I% 5% 1.25 
T e m p e r a t u r e  - • A 

~ ~  1.00 

0.75 

0 .50  

0.25 "~ 

O 2: 

-0.25 

-0.50 "d 

-0.75 

~ 8  -1 .oo  
O 

-1.25 
I r I I I - ! . 5 o  

60 120 180 240 300 360 
Angular location [deg.] 

Fig. 6. 

maximum discrepancies in initial conditions are even 
greater, at 0.0002, 0.96 and 34.99% for the 0.0, 1.0 
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Table 5. Estimate initial condition [G(R, 0)] and boundary condition [F(0), and Q(0)] for example 2 without measured error, 
time from 0.075 to 1.5, and R = 0.8 

0 (deg) 

F(O) Q(O) 

Estimate Estimate 

Exact 2 points 3 points 9 points Exact 2 points 3 points 9 points 

0 0.0 
40 0.5142300 0.5143150 
80 0.7878462 0.7879255 

120 0.6928203 0.6929107 
160 0.2736161 0.2736951 
200 -0.273616 -0.273530 
240 -0.692820 -0.692729 
280 -0.787846 -0.787768 
320 -0.514230 -0.514144 
Max. 0.0 8.561 x 10 5 
error 

8.731x10 6 1.0210x10 3 3.307×10 s 0.0 1.8127x10 5_2.5152x10 4_6 .865×10 
0.5153843 0.5139164 -0.642787 -0.642613 --0.640445 -0.643423 
0.7890025 0.7875328 --0.984807 -0.984646 -0.982463 -0.985443 
0.6939631 0.6925077 --0.866025 -0.865841 -0.863703 -0.866662 
0.2747834 0.2733045 -0.342020 -0.341867 --0.339664 -0.342658 

-0.272472 --0.273927 0.3420201 0.3421876 0.3443413 0.3413817 
-0.691656 -0.693132 0.8660254 0.8662092 0.8683742 0.8653873 
--0.786698 -0.788159 0.9848077 0.9849645 0.9871478 0.9841725 
-0.513080 --0.514546 0.6427876 0.6429725 0.6451182 0.6421548 

1.1494x10 3 3.1367x10 4 0.0 1.567x10 4 2.322x10 ~ 6.384x10 4 

(0.02%) (0.22%) (0.06%) (0.02%) (0.27%) (0.19%) 

G(R, O) 

Estimate 

R Exact 2 points 3 points 9 points 

0.6 0.58778525 0.58775861 0.58881026 0.58758933 
0.7 0.95105651 0.95115641 0.95107261 0.95099708 
0.8 0.95105651 0.95105575 0.95106280 0.95105646 
0.9 0.58778525 0.58770673 0.58772861 0.58786319 
1.0 0.0 -0.00000456 -0.00067381 0.00015165 
Max. error 0.0 7.852x 10 s 1.025 x 10 3 1.593 x 10 4 

(0.13%) (0.17%) (0.16%) 

Table 6. Compar ison initial condition [G(R, 0)], for cr = 0%, a = 1%, and a = 5%, r = 0.075 ~ 1.5, in example 2, with 18 
measuring points 

G(R, 0) 

Estimate 

R Exact a = 0 %  ~ r = l %  a = 5 %  

0.6 0.58778525 0.58778499 0.58214325 0.45245674 
0.7 0.95105651 0.95105631 0.957761801 1.28386210 
0.8 0.95105651 0.95105681 0.95239247 0.64226435 
0.9 0.58778525 0.58778636 0.58324153 0.66506224 
1.0 0.0 0.00000018 -0.0041205 0.20603362 
Max. error 0.0 l . l l x l O  -~ 6.56x10 3 3.328x10 i 

(0.0002%) (0.96%) (34.99%) 

a n d  5 .0% e r ro r  cases ,  respect ively .  T ab l e  7 a lso s h o w s  

a c o m p a r i s o n  o f  su r f ace  t e m p e r a t u r e ,  a n d  h e a t  f lux 

for  a = 0.0, 1.0 a n d  5 .0% wi t h  45 m e a s u r i n g  po in t s .  

M a x i m u m  d i sc repanc i e s  in t e m p e r a t u r e  a t  the  i n n e r  

su r f ace  a re  0.0006,  0.71 a n d  3 .49% for  t he  0.0, 1.0 a n d  

5 .0% e r ro r  cases ,  respect ive ly ,  t he  m a x i m u m  dis-  

c r epanc i e s  in h e a t  f lux are  0.007,  0.83 a n d  4 . 1 5 %  for  

the  0.0, 1.0 a n d  5 .0% e r ro r  cases ,  respect ively .  T h e  

c o r r e s p o n d i n g  m a x i m u m  d i sc repanc i e s  in ini t ial  con -  

d i t ions  a re  0.0002,  0.69 a n d  18 .90% for  the  0.0, 1.0 

a n d  5 .0% e r ro r  cases ,  respect ively .  T h e  d i s c r e p a n c y  

m a g n i t u d e s  in t he  t e m p e r a t u r e ,  h e a t  flux, a n d  ini t ial  

c o n d i t i o n  are  d i rect ly  p r o p o r t i o n a l  to the  size o f  

m e a s u r e m e n t  er ror ,  the  inve r se  va lues  a re  sens i t ive  to 

m e a s u r e m e n t  error .  T h e  p r e s e n t  resu l t s  c o n f i r m  t h a t  

the  inverse  va lue s  be ing  ex t r eme ly  sens i t ive  to 

m e a s u r e m e n t  e r ro r  is one  o f  the  i n h e r e n t  c h a r a c -  

ter is t ics  o f  I H C P .  By i n c r e a s i n g  m e a s u r e m e n t  po in t s ,  

t he  a c c u r a c y  o f  the  e s t i m a t e  va lue  increases .  

CONCLUSION 

T h e  p r o p o s e d  m e t h o d  h a s  been  i n t r o d u c e d  for  solv-  

ing  a 2 -D  ho l l ow  cy l inde r  inve r se  c o n d u c t i o n  p r o b l e m .  

A direct  inve r se  f o r m u l a t i o n  is c o n s t r u c t e d  u s i n g  the  
reverse  m a t r i x  w h i c h  der ives  f r o m  the  g o v e r n i n g  e q u a -  



226 P .T .  HSU et al. 

Table 7. Estimate initial condition [G(R, 0)] and boundary condition [F(0), and Q(0)], for ~r = 0%, a = 1%, and a = 5%, 
= 0.075 ~ 1.5, in example 2, with 45 measuring points 

0 (deg) 

F(O) Q(O) 

Estimate Estimate 

Exact a = 0% ~r = 1% ~r = 5% Exact a = 0% cr = 1% a -  5% 

0 0.0 1.004 x 10 9 
40 0.5142300 0.5142297 
80 0.7878462 0.7878460 

120 0.6928203 0.6928209 
160 0.2736161 0.2736178 
200 -0.273616 -0.273614 
240 --0.692820 -0.692819 
280 -0.787846 -0.787746 
320 -0.514230 -0.514232 
Max. 0.0 2.736 x 10 6 
error 

1.4880 x 10 4 7.4400 x 10 4 
0.5131821 0.5089919 
0.7862000 0.7796159 
0.6879825 0.6686285 
0.2733922 0.2724897 
0.275240 -0.281744 

-0.689546 --0.676455 
-0.789339 0.795312 
-0.512341 -0.504776 

4.9378 x 10 3 2.4191 x 10 2 

(0.0006%) (0.71%) (3.49%) 

0.0 7.0518×10 9 2.467x10 3 _1 .233x10 : 
-0.642787 -0.642787 -0.640229 -0.629996 

0.984807 -0.984807 -0.992995 1.025745 
-0.866025 -0.866026 -0.874713 -0.909464 
--0.342020 -0.342022 --0.341835 --0.341090 

0.3420201 0.3420177 0.3392869 0.3283636 
0.8660254 0.8660237 0.8713882 0.8928462 
0.9848077 0.9848084 0.9859052 0.9902927 
0.6427876 0.6427910 0.6477436 0.6675539 
0.0 2.42x 10 5 8.1847x 10 3 4.0938 x 10 -2 

(0.007%) (0.83%) (4.15%) 

G(R, O) 

Estimate 

R Exact ~r = 0% a = 1% a = 5% 

0.6 0.58778525 0.58778499 0.59244097 0.70902689 
0.7 0.95105651 0.95105631 0.95033039 0.94742670 
0.8 0.95105651 0.95105681 0.95878477 0.98969660 
0.9 0.58778525 0.58778636 0.56498039 0.47375651 
1.0 0.0 0.00000018 0.00120777 0.06038165 
Max. error 0.0 1.11 x 10 `6 4.0557 x 10 3 1.1140 x 10 

(0.0002%) (0.69%) (18.9%) 

t ion ,  init ial  a n d  b o u n d a r y  c o n d i t i o n s .  T w o  e x a m p l e s  

h a v e  been  u s e d  to  s h o w  the  r o b u s t n e s s  o f  the  p r o p o s e d  

m e t h o d .  F r o m  the  resul t s ,  it a p p e a r s  t h a t  the  p r o p o s e d  

m e t h o d  w i t h o u t  m e a s u r e m e n t  e r ro r  the  exac t  so l u t i on  

c a n  be f o u n d  w h e n  on l y  few p o i n t s  ( two,  o r  three)  

a re  m e a s u r e d ,  a n d  t he  e s t i m a t e d  va l ue s  a re  s tab i l i ty  

( t r ans i en t  o r  s t eady - s t a t e ) .  W h e n  the  m e a s u r e m e n t  

e r ro r s  a re  inc luded ,  it is s u g g e s t e d  t h a t  m o r e  m e a s u r e -  

m e n t  p o i n t s  (18, o r  45) a re  to  be a d o p t e d  for  a be t t e r  

resu l t  in the  p r o b l e m ,  a n d  it c a n  a lso  be f o u n d  t h a t  the  

p r e s e n t  m e t h o d  g ives  a little effect o f  the  m e a s u r e m e n t  

t ime  in te rva l  ( t r an s i en t  o r  s t eady - s t a t e )  on  the  est i-  

ma t e s .  Th i s  impl ie s  t h a t  the  p r e s e n t  m o d e l  offers a 

g r ea t  dea l  o f  flexibility. A f t e r  all, t he  resu l t s  c o n f i r m  

tha t  the  p r o p o s e d  m e t h o d  is effective for  inve r se  h e a t  

c o n d u c t i o n  p r o b l e m s .  
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